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ABSTRACT 

Cooperative Processes Software (Cl’s) is a parallel programming toolkit developed at the Fermi 
National Accelerator Laboratory. It is the most recent product in a” evolution of systems aimed at finding 
a cost-effective solution to the enormous computing requirements in experimental high energy physics. 
Parallel programs written with CPS are large-grained, which means that the parallelism occurs at the 
subroutine level, rather than at the traditional single line of code level. This fits the requirements of high 
energy physics applications, such as event reconstruction, or detector simulations, quite well. It also 
satisfies the requirements of applications in many other fields. One example is in the pharmaceutical 
industry. In the field of computational chemistry, the process of drug design may be accelerated with this 
approach. 

CPS programs run as a collection of processes distributed over many computers. CI’S currently 
supports a mixture of heterogeneous UNIX-based workstations which communicate over networks with 
TCP/IP. CPS is most suited for jobs with relatively low I/O requirements compared to CPU (‘2ooO machine 
instructions/byte of I/O). The Cl’s toolkit supports message passing, wnote subroutine calls, process 
synchronization, bulk data hxnsfers, and a mechanism called process queues, by which one process can 
find another which has reached a particular state. 

The CPS software supports both batch processing and computer center operations. The system is 
currently running in production mode on two farms of processors at Fermilab. One farm consists of 
approximately 90 IBM RS/6000 model 320 workstations, and the other has 85 Silicon Graphics 4D/35 
workstations. The farms are shared by a half dozen experiments each of which run either raw data 
reconstruction or Monte Carlo programs. An upgrade of approximately 100 additional processors is in 
procurement. 

This paper first briefly describes the history of parallel processing at Fermilab which lead to the 
development of Cl?. Then the CPS sofhvare and the CPS Batch queueing system are described. Finally, the 
experiences of using CPS in production on the Fermilab processor farms are described. 

E-mail: fauseyOfilfaus.f~lal.gov 
Telephone: 70X-840-4719 



1. History 

The field of experimental and theoretical high energy physics is computer technology limited. The 

amount of new physics that can be done is directly dependent on how many raw computer cycles can be 

put to useful work. The computing crunch started around 1980, when a new emphasis on heavy quark and 

strong interaction physics, combined with more elaborate and sophisticated detectors, produced huge 

amounts of data. This data consisted of hundreds of millions of independent events, each one describing a 

collision between hvo or more elementary particles. For each event, particles need to be identified, their 

tracks reconstructed, and their physics parameters, such as mass and momentum, need to be calculated. 

Uninteresting events are thrown out and are not considered for the second pass which involves a more 

detailed analysis. But this first pass, called event reconstruction, would take about a hundred years to 

compute on a VAX 11/780. Today, an order of magnitude more data is taken and the time required for 

event reconstruction often exceeds a thousand VAX years. Because the problem maps so obviously onto a 

parallel architecture, a new group was formed in 1984 at Fermilab to find a cost effective solution to this 

problem. This group was called the Advanced Computer Program (ACP) and the results of its efforts was 

the ACP Parallel Processing System [Nash841 IGaines87al [Gaines87b]. 

The idea of the ACP was to integrate commercial components, at as high a level as possible, to produce 

a parallel computer that could provide the raw processing power of a supercomputer, but at a fraction of 

the cost. The ACP system consisted of processor boards which plugged into VME crates. Each board was a 

full-blown computer with a Motorola 68020 microprocessor, a 68881 floating-point coprocessor, and 6MB 

of DRAM. It ran a simple, single-task operating system capable of handling basic UNIX system calls. 

Parallel computers were configured from sets of VME crates, each holding 16-20 boards (nodes). A bus 

developed at Fermilab called the Branch Bus connected each set of VME crates to a host micmVAX, where 

disk and tape resided. The host micmVAX drove the parallel computer by sending raw events to nodes 

through the Branch Bus. Each 68020 node would reconstruct a single event and then send it back to the 

microVAX to be stored on tape for later processing. The host’s job was simple, just keep sending raw 

events to idle nodes for processing and at the same time collwt reconstructed events and write them to 

some output medium. See Figure 1. 



Figure 1 ACP System Topology 
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This system was possible because the event reconstruction problem is very compute intensive. 

Typically 500 to 2000 machine instructions are executed for every byte of I/O. The bandwidth of the 

Branch Bus made it possible to configure parallel systems containing 70-110 nodes. At its peak, there were 

6 ACP parallel computers with over 6OO nodes in total. The first systems came on line in 1986 and the last 

systems were shutdown in May 1992. 

The ACP was a success, but it was clearly inadequate for the next round of experiments which began 

taking data in lY90. The computing requirements for these experiments were an order of magnitude larger 

than for previous experiments. With the arrival of RISC technology, it was decided to build a new ACP 

processor board which incorporated the MIPS R3M processor. These processor boards would each run a 

complete UNIX operating system, and each would have its own (intern4 network address. There would 

be no need for the host microVAX, since each processor board could write directly to nehvork SCSI 

devices. It was proposed to completely re-design and rewrite the ACP sofhvare, partly because the 

hardware configuration was no longer asymmetrical, and also because quite a bit had been learned from 

our experiences with the first system. The project consisted of redesigning the processor board, porting the 

MIPS RISC/OS operating system to the board, and rewriting the ACP software. This project was 

completed and some of these systems are in existence today At about the same time the ACl’R3000 project 

was coming to a close, low-cost RISC workstations became available. The redesigned and rewritten 

software, which was now called Cooperative Processes Software (CPS) [Kaliher901 [Biel90al, was ported to 

some of these platforms. A large number of workstations were networked together and nm as a single 

parallel processing system. These loosely coupled workstations were called “RISC processor farms” 

[BielYObl. See Figure 2. 



Figure 2 RISC Processor Farms (Event Reconstruction Topology) 
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The RISC processor farms take advantage of the explicit parallelism present in the problems of event 

reconstruction and experiment triggering [Nash891. The problems of theoretical physics, however, were 

quite different. Problems such as lattice gauge calculations and quantum chmmodynamics map more 

naturally onto a more tightly coupled grid-oriented architecture. After the original ACP system, 

development proceeded in hvo different directions. The first was described above and resulted in RlSC 

processor farms. The second was aimed at the theorists’ problems and resulted in a grid-oriented parallel 

computer called ACPMAPS, which is an acronym for Advanced Computer Program Multi-Array 

Processor System [FischlerYZ]. This system is characterized by high floating point performance, extremely 

dense connectivity, high bandwidth and low latency of communications, and an MIMD architecture. It has 

run in production at 5 GFlops peak and roughly 1.3 GFlops sustained since early 1991, in its initial 

configuration. It was based on 256 processors using the Weitek XL chip set. The connectability was 20 MB/ 

channel with an application level message passing latency of 6 wsec. The system is now running with dual 

Intel 1860 modules as it is being upgraded to 50 GFlops peak. 

Just as CPS was developed for the RISC processor farms, a new software system called Canopy was 

developed for the ACPMAPS. Canopy is designed to support grid-oriented problems. Scientists can use 

Canopy subroutines to create a grid with known connectivity and to manipulate fields situated on the 

grid. The parallelism is automatically invoked by Canopy, which calls task routines to do operations on a 

site. A summary of the evolution from the original ACP to the current systems is shown in Figure 3. 
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2. CPS 

CI’S is a package of software tools that makes it easy to split a computational task amonga set of 

processes distributed on a RISC processor farm, which is a collection of UNIX-based workstations 

connected to a local area network. References to other software systems with some feahn’es in common 

with CPS are included at the end of this paper. This includes PVM IGeist911, Linda [Gelemter901, 

UFMULTI [Avery901, Condor [LitzkowSSl, and Utopia [Zhou921. There a~ many features in CPS that are 

not present in other packages. These include process queues, asynchronous data transfers, and multiple 

synchronization mechanisms. 

The primary tools include a subroutine library, callable from either Fortran or C, and a Job Manager 

program. The subroutine library provides mechanisms for interprocess communication, synchronization, 

remote subroutine calls, process selection, and job termination. The Job Manager starts and stops 

processes, handles errors, and manages global job information. 

Parallel programming with CPS is often described as ‘large-grained’ and loosely coupled’. Large- 

grained means that the components running in parallel are typically entire subroutines or programs. 

Loosely coupled describes a set of processors which run relatively independent of each other on a network 

where communications are slower than in more tightly coupled processors and memory is distributed. 

Because of this, CPS is best suited for applications which have relatively low I/O requirements compared 

to CPU requirements. This is in contrast to parallel programming in which a few machine instructions or a 

few lines of code are executed in parallel, such as in vector processing with parallelizing compilers. 

l’rograms of this type typically require shared memory 

CPS supports several models of parallel programming. The client/server model is supported with 

remote subroutine calls. Processes may also interact with each other through synchronization, message 

passing, and bulk data transfers. 

Each process in a CPS job runs a program written by the user. These processes can be distributed in 

any way among the computers on the network. For example, consider a ten process job. All processes 

could run on a single CPU or they could be spread out over ten CPUs. You could also run the job on five 

CPUs, with hvo processes sharing each CPU. Apart from considerations of speed, the job will run the 

same. From a hardware point of view, the processes in a Cl’s job run on a set of RISC workstations and 

communicate with each other using TCI’/IP. From the user’s programming point of view, the job is a 

1. In this paper. CPU is a synanym for computer or workstation. 
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network of fully interconncctcd processes. Each process can talk to another in the same way regardless of 

where the two are physically located. 

When a program is converted to CT’S, the job is split among many processes. To achieve parallelism, 

many processes can perform the same function. However, some of the processes can perform functions 

different from others. A group of proccsscs which run the same program on the same type of CPU is called 

a class of processes. In a CPS program, the job is divided among one or more classes of processes, each of 

which performs a separate function. 

To design a CPS application, one must first split the job into separate functional units (or classes) and 

then decide how many processes each class should run. CPS programs are typically designed such that the 

number of processes in one class is adjustable. This way the job can expand to fill the available number of 

CPUs. The programmer must also decide on what type of machine each class will run, and the flow of data 

and control among processes. 

For example, in a high energy physics event rwonstruction program, events are read from tape, 

reconstructed, and then selected events are written to an output tape. An event is basically a digitized 

recording of tracks left by particles after a collision between two or more particles. Each event might be 

lfl,OOO bytes of data and each cvcnt is completely independent of all other events. A CPS pmgrarn which 

performs the task of event reconstruction might be divided into three classes. The first class reads events 

from the input tape and sends them to processes in the second class, which do the event twonstruction. 

There is only one process in the first (input) class, but there can be many processes in the second 

(reconstruction) class. When a process in the reconstruction class has reconstructed the event, it may or 

may not send the data onward to the third class, which writes the event to tape. Like the input class, the 

third (output) class has only one process. Figure 2 shows this topology. 

It is possible to increase the number of input and /or output processes. Figure 4 shows the topology of 

a OS job with multiple input and output streams. 

Figure 4 Event Reconstruction with Multiple InpuVOutput Streams 
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CDF, an experiment at Fermilab, has implemented their event reconstruction probarn with one input 

stream and multiple output streams. Most other experiments at Fermilab follow the standard event 

reconstruction topology in Figure 2. 

In high energy physics (HEI’), event reconstruction programs typically need to read in data files 

containing constants which are used in the reconstruction of each event. These data files only need to be 

read once, at the beginning of the job. It is possible to program each reconstruction process to read these 

files before accepting events. But this means the files would have to be distributed among all CPUs on 

which reconstruction processes run. If NFS is used, all reconstruction processes would be accessing the 

same files at once. An easy way to resolve this is to create another process to act as a constants server. It 

first reads the constants files and then acts as a server accepting requests (from reconstruction processes) to 

fetch the data. This way the disk is accessed only once by the constants server. 

Also, event reconstruction programs typically produce histograms that are written to disk files. One 

could create another process to serve as a histogram builder. It would accept remote subroutine calls from 

reconstruction processes to add to the histogram. At the end of the job, one of the processes, either the 

input or output, would call another remote subroutine in the histogam process to write the histogram to 

disk. Figure 5 shows the topology of a CPS job with a constants server and a histogram process. 

Figure 5 Event Reconstruction with Constants & Histogram Servers 

Disk 
Files 

Reconstruction ’ 

CPS imposes no constraints on the topology of a distributed program. Any process may communicate 

with any other, as shown in Figure 6 

Figure 6 Fully Connected CPS Processes. 



3. CPS Subroutines 

This section describes the functionality provided by the CPS subroutine library The names of CPS 

subroutines are printed in italics. 

Process Initiation and the Job Manager 

The Job Manager (JM) is the first process started in a CPS program. The JM is a program that is part of 

the CPS software, and is not in any class. A Job Description File (JDF) is supplied as input to the JM. The 

JDF tells how many processes of each class to start, what types of CPUs to use, and possibly which CPUs 

to use. Based on this, the JM will start user processes (processes which run programs written by the user) 

on remote CPUs and assign each a logical process number. If the JDF does not explicitly tell where to put 

each process, the JM will assign processes to CPUs in a way such that the load is reasonably well balanced 

among the CPUs in the farm. Each user process must first call nq-init to complete the start-up protocol 

with the JM. Once all processes have started, the JM provides central services, such as synchronizing 

processes and maintaining process queues (to be discussed later). The JM will also receive all output 

written to standard output from user processes. This output will be received on TCP sockets, and is 

written to both the JM’s standard output and to a log file. Output produced by a user process is prepended 

with the process number to identify the sender. 

Process Termination and Program Crashes 

A CPS program which has run successfully to completion ends when one process calls ncp-stopjob. 

When this happens, the JM kills each remaining user process and then exits. Processes which act as 

subroutine servers remain alive until killed by the JM. In other types of processes, it may be necessary to 

synchronize with the process callingacp-stopjob to avoid being killed by the JM prrmaturely. For 

example, in the topology shown in Figure 2, the reconstruction processes are servers and will run until 

killed by the JM. The input process however, should wait until all events have been flushed to the output, 

and then tell the output process to stop the job. 

Processes which have finished their part in a job can call acp-stopgmcess to terminate without ending 

the job. Processes which have finished, but wish to sleep until the end of the job can call acp-sleepgrocess. 

The difference is that with acp~sleygx~cess, other processes can still access the sleeping process’s data. For 

example, the constants server in the previous example might call acp-sleep_ymcess after it has read the 

constants. Other processes can retrieve the data by callingacp_gef, which is described later. 



It is also possible to declare in the JDF how many processes in R class need to crash before the job is 

aborted. Once a class has too few processes remaining alive, the JM will abort the job. This is an optional 

feature that allows the user to terminate a job which has lost a number of CPUs because of crashes or 

network problems. 

Process Synchronization 

Processes may synchronize with each other in a number of different ways. The simplest, most 

straightforwnrd way is to define a synchronization point (or barrier) which all processes must reach before 

continuing. CI’S allows the user to define the set of processes which must reach the synchronization point 

before continuing onward. Up to 128 different synchronization points may be active at any one time. 

Processes can wait at a synchronization point by calling acp-sync, passing a bit string identifying a set of 

processes and a synchronization number as arguments. The JM will notify each process (and acp_sync will 

return) when each process has reached the synchronization point. 

Processes may also synchronize by waiting for a process queue to become empty or full. This will be 

described later under process queues. Another way of achieving synchronization is to exchange 

user-defined messages. This will also be described later under explicit message passing. 

Transferring Data 

CPS provides routines for transferring large amounts of data between processes. Each block of data 

that is to be accessed remotely by other processes must first be declared by calling acp-declare-block. With 

nly-declare-block, the data block is associated with an integer identifier. Other processes will reference the 

block using the identifier. 

The subroutine aq-send is used to send a block of data to one or more processes. If multiple processes 

are receiving the data, the data is not sent using intemet broadcasts. Instead, since TCP sockets are used, 

the data is sent individually to each process in the set. Processes on the receiving end of an q-send will 

receive the data in the background (at the signal handler level) while the process is running. It may be 

necessary to synchronize the sending and receiving processes to avoid overwriting data which the 

receiving process m;ly be using. 

The subroutine up+@ may be used to retrieve a data block from one or more processes. If multiple 

processes are specified in the subroutine call, the data is summed (as 32-bit integers) in the destination 

array. In terms of efficiency, q-sad and acpset are nearly equal. 
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Remote Subroutine Calls 

One way in which prwcsses can communici\tc with each other is through remote subroutine calls. A 

process which is going to act as a remote subroutine server must declare each subroutine it intends to 

serve by callingacp-declare-slrbrolctine. This will associate an integer identifier with each subroutine which 

other processes can use to call it. The remote subroutine’s arguments and the byte count for each argument 

is also declared in act-declare_subnnrti?le. All arguments are treated as 32-bit integers when passed to the 

subroutine server. 

An optional subroutine, nc~-dec[nre_arXu,neJ~ts, can be used to declare the type of argument passing 

desired. By default, arguments are read-write. In this mode, the arguments in the remote subroutine server 

are initialized with the arguments passed, and they are copied back when the subroutine returns. 

Arguments csn also be declared read-only or write-only. In write-only, the arguments at the server are 

initialized to zero, but the values arc copied back when the subroutine returns. In read-only, the argument 

values are copied to the server, but are not copied back. 

Processes can call remote subroutines in three ways. If a remote subroutineis called synchronously, the 

calling process will wait until the subroutine returns. If the subroutine is called asynchronously, it will 

rctorn immediately, before the subroutine completes. The arguments will not be copied back regardless of 

how they were passed. The third method is to call the subroutine asynchronously, but when the subroutine 

returns, it will put the xgwnents and the process number onto a process queue. Process queues will be 

described shortly. 

Processes can btwme dedicated remote subroutine servers by calling q-service-calls after all 

subroutines have been dwlared. This will cause the process to sleep forever and wake uponly to service 

remote subroutine requests. Multiple remote subroutine calls to the same process will be queued and 

serviced in the order in which they arrive. 

Process Queues 

Process queues provide a simple mechanism for selecting among processes that are in a particular 

state. A prtrccss queue contains a set of processes that are in some user-defined state. The process itself is 

not stored on a queue, only the process number. A process can put itself onto a queue, or be put onto a 

queue by another process. Queueing or dequeueing a process involves sending a message to the JM, which 

keeps it record of the processes on each queue. Processes are dequeued in the order in which they were 

queued. Processes are typically put on queues when they are ready to service a remote subroutine call, 
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receive a block of data, or receive an explicit message 

In Cl’s, there are 128 queues to which the user can assign meaning in any way. For example, queue #12 

might hold all idle processes, while queue #2fl is for processes holding ‘special’ events and queue #21 is for 

processes holding ‘normal’ events. 

The subroutine ac~-qwue~~~ess can be used to put a process onto a queue. This does not cause the 

process to stop running. The only thing that happens is that the Job Manager enters the process number 

onto the specified queue within the JM’s internal queue data structures. The subroutine 

a~-deqrrnre~rocess can be used to get a process number from a specified queue. If there are no processes 

on the queue, the call will block until a process is queued. Acp_de9qlcPlre_ifgossible can be used to return 

immediately if there are no processes on the queue. 

Before a process can be queued, it must call my-declare-queue to declare that it is eligible to be put on a 

specified queue. A common misconception is that this routine creates a queue, but this is not tme. All 128 

queues exist before the job is started. A queue is full when all processes that are eligible to be put onto the 

queue are on the queue, The subroutine acp_wnif_qrmre can be used to block until a queue becomes full. It 

can also be used to block until a queue bca,mes empty. 

Processes can be queued with a list of arguments. The number of arguments, and the number of bytes 

for each can be declared in the call to aq-dec/nre_qunte. This makes it easy to pass information between the 

qucueing process and the dcqucueing process. Queue arguments are commonly used in a context called 

‘call-and-queue’. When a process makes a remote subroutine call, it does not wait for the subroutine to 

finish, but instead specifies a queue onto which the server is directed to place itself and the remote 

subroutine arjiuments when the call returns. A process in another class can then dequeue the process and 

receive the return al;7uments of the remote subroutine call. In effect, the remote subroutine call ‘returns’ in 

an11thcr process. 

A process can also put a special end-ofqueue marker onto a queue. When this happens, no more 

processes are allowed onto the queue. The end-of-queue marker is commonly used to pass job termination 

information. For example, the output process in the standard event reconstruction topology will dequeue 

pn~ccsses and write output until an end-of-queue marker is dcqucucd. 

Explicit Messages 

An explicit message is a short packet of data sent from one process to another. An explicit message 
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contains a message type (from 1 to 20) and up to 2048 bytes of information. Acp-transmit-message can be 

called to transmit a message to another process. Acp-receive-message can be used to receive a message of 

one or more specified types. This call will block until a message matching one of the desired types arrives. 

Calls to acp-transmit-message never block. If there is no receiver, the message will be stored internally in a 

queue (not a process queue) and delivered when a receiver arrives. Acp_check-message canbe used to check 

if a message of one or more specified types has arrived. 

Asynchronous Data Transfers 

When q-send or acp~ef is used to do a data transfer, the call does not return until the data transfer is 

complete. In order to increase the throughput of CPS programs, routines have been provided in which a 

transfer could be initiated, but control would return immediately to the user’s program. Also, in most 

cases the other process in a data transfer is obtained from a call to acp-dequeuegrocess. If the queue is 

empty, the dequeue operation blocks until a process is queued. CPS supplies asynchronous data transfer 

routines that combine the dequeue operation with the data transfer. Typically the way this works is that 

both the queue number and the arguments for a data transfer are specified in one subroutine call, which 

initiates an asynchronous dequeue operation and returns immediately. When a process is eventually 

dequeued, the data transfer is initiated. This all occurs in the background. When the data transfer is 

complete, the process is notified in some way. The notification method depends on the specific subroutine 

Cdl. 

The asynchronous data transfer routines were first implemented specifically for processes whichdo 

tape l/O. These processes typically read some data from tape, send it over the network to another process 

for analysis, and then go back to the tape to get some more data. The same is true for processes writing to 

tape, which get data from the network, write to tape, and then get more data from the network. In this 

synchronous way of running, the overall throughput of the Cl’s job will be some fraction of the data rate of 

the slowest device. If both network and tape data rates were equal, the overall throughput would be half 

the tape data rate. If the network throughput dramatically increased, the overall throughput would 

approach the tape data rate. 

At the present (at Fermilab) the tape drive data rate is slower than the network. After each tape read, 

there is a delay to send the data across the network before the next tape read is started. If the time delay 

between successive tape reads/writes is too large, the tape drive may leave streaming modeand enter 

start/stop mode which can drastically reduce overall throughput. The asynchronous data transfer 



routines were designed to solve this problem. 

To write a Cl’5 program with asynchronous data transfers, some sort of buffering scheme is required 

A circular buffer is the solution we have chosen. After each buffer is filled with data from tape, a network 

send is initiated which will complete in the background. Tape reading can be continuous until a buffer is 

reached where the network send has not yet completed. 

Cl’s provides hlio sets of subroutines for asynchronous dequeue and transfer operations. One set is 

called high-level and the other low-level. High level routines include acp-buffer-index, q-start-send, 

aiy-~oit fur-data, acp-datumrmdy, acp_startqets, ucp-handle_data, acp-old-of-data, and acp-buffer-set-wait. 

Low level routines include flcp-quew_xfcr, acp-dqqet, acp-dq_send, and acp-wait&@. The high level 

routines implement a circular buffering scheme for the user. The low level CPS asynchronous routines 

leave the buffering to the user. The high level CT’S asynchronous routines call the low level routines to do 

their work. 

4. CPS Implementation 

This section describes the underlying architecture used to achieve fast, reliable, and fault tolerant 

communications between CPS processes. A job is started by first starting the JM, which reads the JDF to 

find out whcrc to start processes and which program each process is to run. The JM then starts the User 

Processes (processes which run programs written by the user) on all the nodes. When a User Process starts, 

its standard input, output, and error are all assigned to a single TCP socket connected to the JM. These 

connections will be alive during the entire job so that the JM can collect terminal output from User 

Processes. The JM then forks a process. The child process starts a daemon called the Shared Memory 

Manager (SHM) running on each system where there are User Processes. Only one SHM per system is 

started, and TCl’connectiwis between the JM child process and the SHM remain active for the duration of 

the job. The JM child process maintains the process queue data structures and other global job information, 

such as process stahx information and which processes have reached synchronization points. The JM 

parent process only collects terminal output from User Processes. 

Each SHM creates an IPC shared memory and an IPC set of semaphores to be used for 

communications between processes on the same system. The shared memory contains a global process 

map, message buffers, and message queue structures. Each shared memory will have one queue structure 

for each User Process on the system, one for the SHM, and a free queue. For example, if two User Processes 

share a CPU, the shared memory will contain four internal queues. Semaphores are used to synchronize 
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write access to the queue structures. When the job begins, all message buffers are queued on the free 

queue. A User Process can send a message to another User Pmcess by dequeueing a buffer from the free 

queue, depositing the message into the buffer, queueing it on the destination User Process’s queue, and 

sending a UNIX signal to the destination User Process. This involves two semaphore operations, two 

memory copies, and one signal operation. What we have so far is shown in Figure 7, which shows a pb 

with four User Processes distributed on two CPUs. 

Figure 7 CPS Job with Four User Processes. on Two CPUs. (JM 
JMc = Job Manager child, UP = User Process, SHM = l 

= Job Manager parent, 
hared Memory Manager) 

.-. 
Connections 

When a User Process wishes to send a message to the JM or to a User Process on another CPU, a 

message buffer is first obtained from the free queue, the message is deposited in the buffer, stamped with 

an address, and queued on the SHM’s queue. If the message is intended for the JM, the SHM sends it over 

the TCP connection to the JM, otherwise the SHM creates a TCP connection with the SHM on the remote 

CPU where the destination User Process is located. The message is sent to the remote SHM, which delivers 

it to the destination User Process. Any TO connections between SHMs created in this way are kept alive 

for the duration of the job for future possible messages. Figure 8 shows a Cl3 pb with a TCP connection 

established between two SHM processes. 

Figure 8 CPS Job with SHM to SHM TCP connection. 

TCP 

This method of message passing has proven to be very reliable in production. Messages which use this 

method include remote subroutine calls, synchronization, queueing and dequeueing. and explicit 

messages. Bulk data transfers (q-send, acp’-get, and asynchronous data transfer routines) are 
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accomplished in a different way 

If a User Process transfers data to/from another User Process on the same CPU, the data is broken up 

into 2K clunks and passed through the shared memory in the normal message passing fashion. If however 

a User Process (UPI) hansfers data to a User Process (UPZ) on another CPU, the following occurs. A 

control message is sent to UP2 telling it to establish a TCP connection with UPI. The control message is 

sent through the Shared Memory Managers using the method described above. A TCP connection is then 

established between UP1 and UP2. The User Process with the lower logical process number always accepts 

a connection request, and the User Process with the higher logical process number always initiates the 

connection. With the TCP connection established, instructions for the data transfer a~ sent through the 

TCP connection from UPI to UPZ. The receiving process will then send a ‘go-ahead’ message (over the 

TCP connection) to the sending process. The entire block of data is then sent over the TCP connection to 

the receiving process. See Figure 9. 

Figure 9 CPS Job with TCP connection between two User Processes 

TCP 
Connections 

The TCP connection established between the two User Processes is not shut down after the transfer 

completes. Any subsequent transfers will use the connection already established. It is possible to limit the 

maximum number of TCP connections a User Process can have open at one time, but so far this has not 

been ncccssary. 

The overhead associated with this method of transferring data is the initial control message. In the 

case where a TCP connection between User Processes is not yet established, the overhead also includes the 

time to establish the connection. The performance of this method of data transfer approaches the 

maximum ethernet throughput (using TO) as the size of the data block transferred increases. 

The question of using UDP rather than TCP is often asked. UDP is faster than TCP and has less 

overhead, but it is not a reliable byte-stream protocol, like TCP. TCP was chosen because CPS Fequires 

reliability, and also because it is common to transfer large amounts of data. UDP is better suited for 
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applications in which single messages typically fit in one UDP packet, and reliable message passing is not 

required. 

The Job Manager (IM), which provides centralized services, does not affect the scalability of a CPS 

program, because data transfers, subroutine calls, and explicit message passing do not involve the JM. The 

JM is used only for process queueing and synchronization. The benefits of simplicity and increased 

functionality outweigh the disadvantages of a central control point. 

There are two possible deadlock situations, and both are handled in similar ways. The first deadlock 

situation involves TCP connection establishment. To establish a TCP connection, one process must initiate 

the connection, and another must accept. There will be a deadlock if two processes simultaneously attempt 

to initiate a connection with each other. This is solved by forcing the lower numbered process to always 

initiate the connection request, and the higher numbered process always accepts a connection request, 

regardless of who is the sender, receiver, or initiator of the data transfer. The other deadlock can occur after 

the connection has been established This is the classical circular deadlock problem shown in Figure 10. 

Simultaneously, processes try to send to each other forming a loop where everybody is sending, but 

nobody is reading. In the case with two processes, the solution is to give the ‘right-of-way’ to the process 

with the lower process number, which may send the data while the other must wait. In the general case, 

each process handles the data transfer with the lowest process number first, regardless of which process 

initiated the transfer. These are not fair solutions, but deadlock situations are typically rare occurrences 

and the method works. 

Figure 10 Circular Deadlock. In the genera case, processes form a ring where all are sending 
and none are receiving. In the simple case, two processes simultaneously send to 
each other. 

There are certain advantages to having a Shared Memory Manager on each CPU. The SHM 

periodically checks to see if each User Process is still alive. If one crashed, the JM is notified, and the 

appropriate action is taken. The SHM is also responsible for stopping processes when a job finishes or 

aborts, and cleans up shared memories and semaphores, which are persistent system objects. 
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5. RISC Processor Farms 

RISC processor farms are a cost+ffective way of satisfying the computing requirements of high-energy 

physics event reconstruction HEP jobs are characterized by a large amount of input and output, and an 

extremely large amount of computing. The farms solution is gaining more popularity and getting more 

attention because other fields have computing problems with similar requirements. The farms solution is a 

compromise between two other possible solutions: the supercomputer solution and the classic batch 

solution, SW Figure 11. 

Figure 11 Three Corn 
Farms are c R 

uting Solutions. From lelt to right: supercomputer, farms, classic batch. 
aracterized by an expandable compute segment. 

Iif 
+ 

The first solution is to buy a mainframe supercomputer or possibly a few of them. The supercomputer 

will run many user’s programs simultaneously, each of which reads and writes to disk or tape. The 

problem with this is that it is much too expensive. For our particular pmblem, the CPU mightbe saturated, 

but much of the I/O bandwidth may go unused. Of the three solutions, the cost/MIPS ratio of the 

supercomputer is by far the highest. 

The second solution is classic batch This involves buying a moderate number of RISC workstations, 

attaching disk and tape to each, networking them together, and sending jobs to them through a networked 

queueing system. Each workstation has one to a few batch queues which accept job requests from other 

workstations on the network. The larger number of peripherals and the increased system management 

overhead make this R more expensive solution than a farm. System maintenance includes both operating 

system administration and hardware maintenance. A less obvious problem is that each user’s jab may take 

an extremely long time to run. This may reduce the percentage of jobs which execute to successful, normal 

completion. On a single workstation, a typical event reconstruction program may take a weekor longer to 

process all the events on a single 8mm tape. 

The third solution is to build a computer farm. One part of a farm is characterized by a large number 
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of workstations, all connected to a local-area network and each equipped with only a system disk. These 

arc called compute servers because the task of each is to accept relatively small amounts of data, do a large 

amount of computing, and return the result, which is also a small amount of data. The other part of the 

farm typically consists of a few workstations called I/O servers. This is where all the peripherals are 

located. Each 1 /O sc’rver may serve anywhere from a dozen to four dozen compute servers. The number of 

compute servers per I/O server depends on many things. Some are listed below. 

. Network throughput. 
n MIPS of compute server compared to I/O server. 
n Job mix - number of instructions executed per byte of I/O. 
n Tape and/or disk speed. 

Figure 11 shows only one possible job topology Any topology is possible, but typically one class of 

processes is made scalable to fit the number of compute servers available. Pmcesses in a job can map to 

CPUs in any way. The event reconstruction program running on Fermilab farms typically map both the 

input and the output process to the same l/O server, and one or two reconstruction processes are assigned 

to each compute server. 

The advantages to a farm configuration are many. Cheaper MIPS can be obtained by buying RISC 

workstations for compute servers. Operating system management for the compute servers can be 

automntcrl. That is, a change can be made on one and ‘broadcast’ to all others. It is most cost effective to 

have as few I/O serwrs as possible. The goal is to drive as many compute servers as possible from a single 

I/O sc’rwr. This may rcquirc a substantial amount of computing power, especially if many jobs share an 

l/O server, but do not share compute servers. The reason for minimizing the number of I/O servers is to 

reduce the amount of system management required, and to keep the number of peripherals, especially 

tape drives, to a minimum. 

Each job will take much less time to complete on a farm than on a single workstation, as in the classic 

batch solution. This is because each job on a farm has a much greater amount of CPU available to it. Of 

course, fewer jobs run simultaneously in a farm system compared to a classic batch system, so the overall 

throughput may be the same. However, the farm solution is less expensive because of the smaller number 

of peripherals. Also, because each job in a farm takes less time to complete, a higher percentageof jobs will 

finish without a glitch, especially if the system is fault tolerant enough to let a few compute servers crash 

without affecting the job. A glitch refers to events such as network congestion and/or failures, tape drive 

malfunctions, media corruption, power failures, etc. This is important since an event reconstruction job 

may take a week or longer to complctc on a single workstation, but only a day or less on a farm 



Fermilab Farms 

Cl’s supports farms of UNIX RISC-based workstations connected to any network running the TCP/IP 

suite of protocols. CPS has been ported to the following UNIX workstation/operating system flavors: 

Silicon Graphics IRIX 
IBM RS60CU AIX 
DEC Ultrix 
SUN suivos 
Hewlett Packard HP/UX 
MIPS RISC/OS 
Fermilab ACP R3000 Processor Board running RISC/OS 

Fermilab currently runs farms of two flavors-IBM AIX and Silicon Graphics IRIX, and provides 

extensive support for these. The compute servers are rack mounted in tiers, each containing seven or eight 

workstations. Each compute server has at least lh MB of memory and a local disk with the operating 

system and paging space. Systems can be configured to match a target application’s requirements. At 

present, Fermilab farms are configured into ‘farmlets’, each with one I/O server and approximately 16 

compute servers on one ethernet segment. At Fermilab, an arbitrary restriction is imposed-processes in a 

CPS job are confined to a single farmlet. Each farmlet is separated by a bridge or muter to isolate CPS 

network traffic from the rest of the nehvork. The Silicon Graphics farms are shown in Figurn 12 and the 

IBM farms in Figure 13 (in their present configuration). 

Figure 12 Fermilab Silicon Graphics Farms. The I/O sewers are 4Dl310 machines. compute 
servers are 4DQ5 and 4Di35 machines. The number of compute servers in each 
farmlet is shown at the bottom. 

4D/35 
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Each I/O server is equipped with 1-8 GB of external SCSI disk and 3-9 SCSI exabyte 8mm tape drives. 
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The amount of disk and tape allocated to each I/O server depends on the requirements of the applications 

assigned to each farmlet. Each I/O server’s disks are NFS mounted on all compute servers in its farmlet. 

This provides access to user and CPS executables as well as scratch space for batch jobs. Network traffic 

outside a farmlet is limited to activities such as user login and operator assisted tape mount requests and 

replies. 

Figure 13 Fermilab IBM Farms. The I/O servers are the machines closest to the bridges. The 
number of compute servers in each farmlet is shown at the bottom. 
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6. CPS Batch and Computer Center Operations 

CPS Batch is a batch system specifically tailored to run CPS programs. It provides job queueing, 

resource allocation, and operator communications services. 

The resources that make up a farm, such as CPUs, disks, and tape drives, are kept in a network-wide 

database. The database is essentially a collection of inter-related data structures that is maintained and 

manipulated by a server process called the Production Manager, or PM for short. Clients programs can 

connect to the PM to view the database or to make insertions, deletions, or modifications. All updates are 

immediately written to disk, and when the PM is started at system boot time, the database is initialized 

from the disk file. The PM server typically runs on a system that is rarely down. 

Resources within a farm can be grouped together to form logical computers, or to use Fermilab jargon, 

production systems. A production system contains a subset of the total set of resources in a farm. For 

example, production systems defined on the Fermilab farms typically consist of an I/O server, a farmlet of 
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11-16 compute servers, and some disk a”d tape drives located on the I/O server. Note that a farmlet is just 

n physical part of a farm that has bee” bridged off to keep network traffic local and to prevent outside 

traffic from affecting it. CPUs can be shared between production systems. This is not true of tape drives, 

which can only be allocated to one system at a time. 

Each production system is give” a name and has a batch queue and a list of users allowed to use it. 

CPS batch jobs submitted to a production system will run one at a time and in the order submitted. 

Processes (in the CPS batch job) are assigned to CPUs within the production system. The working 

directory for the batch job will be located on the disk assigned to the production system. If necessary, the 

CPS Batch system will copy the user’s executables and data files to the working directory before the job 

starts. (This is not necessary if these files can be remotely accessed with NFS.) The production system 

definitions, as well as the job queues, arc also storcui in the database by the PM. 

Cl5 Batch includes utilities for submitting, aborting, and cancelling jobs. Utilities also exist for 

examining, creating, and updating production system definitions. These utility programs all communicate 

with the PM server to do their work. 

The operator communications subsystem consists of an X-windows operator console and utilities for 

sending tape mount requests to the console. Tape mount requests can be sent with a shell command or 

with a subroutine call. On the operator console, pending requests are shown as icons containing the name 

of the device, the label of the tape, and the write protection required. The operator points and clicks on the 

icon and chooses a” appropriate response from a pop-up menu. If ‘success’ was the response, the tape 

request software checks to see if the tape was mounted properly, i.e., there is a tape in the drive and the 

write protection is correct. If not, the mount request and an error message are sent back to the operator 

ulnsole. 

The operator console also monitors the PM server, showing a smiling face if it is running and a 

tombstone if it isn’t. Batch jobs can also be monitored from the operator console. The intent is to make the 

operator cons~~lc able to display pnrblrms as they arise and supply enough information so that the 

operations staff can make an intelligent decision to fix the problem. It is also intended to supply the means 

to fix common problems from within the operator console itself. For example, if a tape drive is found to be 

broken, it can be removed from the production system and replaced with a spaw drive already on the I/O 

server but not currently assigned to a production system. 

The CI’S Batch system also supplies a pn,gram for receiving tape mount requests on an ASCII terminal 
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and a program for responding to tape mounts from the command line, 

7. Performance 

A typical cxpcriment (but by far nut the largest) at Fcrmilab has approximately a thousand 8mm tapes 

of raw event data that need to be reconstructed. It is therefore very important to obtain the highest possible 

overall throughput. Consider Figure 2. We define the aggregate throughput as the sum of the rateat which 

data is read from the input tape and the rate at which data is written to the output tape There are many 

possible bottlenecks. The first is obvious. With one input tape and one output tape, the maximum 

aggregate throughput is the two tape data rates in streaming mode. Another possible bottleneck is the 

network. How fast can data be transferred from an l/O server to a compute server, and how does this 

compare to the combined tape data rates. In the Fcrmilab farms, the fastest an Eimm tape can read or write 

is approximately 241) KB/scc. The two tapes combined are 480 KB/sec, which is well below the 1OMbps 

limit of TCP on ethernet. 

One feature of computer farms is that the bottleneck can often be a combination of several things. For 

example, in our experiences we have had the following problem. The I/O servers became heavily loaded 

because each was shared by several experiments. Also, each experiment was running in synchronous 

mode. This means that each tape and network I/O operation is performed synchronously. An event is read 

from tape, then sent over the network, then another wad from tape, etc. The problem is that if the load on 

the I/O server is too heavy, and/or the network is too congested, subsequent reads from the tape may be 

spaced too far apart in time. If this happens the tape drive could enter start/stop mode which drastically 

reduces overall throughput. The solution to this problem is a combination of two things. First, either the 

CPU power of the I/O servers can be increased, or the load on them decreased. Second, applications that 

use tape should take advantage of the asynchronous CI’S routines. By doing this, network I/O operations 

are completed in the background and the next tape read or write can be started immediately. It should also 

bc noted that using asynchronous I/O may increase the load on the I/O server. 

The CPS software itself also plays a rule in performance. Two things need to be considered. The first is 

the amount of CPU required by the Shared Memory Manager (SHM), which runs on each CPU. 

Benchmarks have shown SHM CPU usage to be ten percent or below. The SHM uses around ten percent of 

the CPU in jobs that are I/O bound which send data in small blocks (4K or less). Less CPU is used by 

applications that send data in large blocks 64K-128K). The second consideration is the efficiency of CPS in 

message passing and transferring data. Data transfers involve a constant overhead, regardless of block 
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size, which is the time required for the two processes to complete the ‘handshake’, where one process 

agrees to send data and the other agrees to accept data on TCP connected sockets. As the amount of data 

per transfer becomes larger, theoverhead becomes less and less significant, and the CPS data transfer rates 

approach the TCP 1 Mbps limit on ethernet. Benchmarks have been nm on the Silicon Graphics farm at 

Fermilab to test the aggregate throughput of Cl’s jobs with varying block sizes. The block size is the 

amount of data transferred per CPS subroutine call. The benchmark program ran with both the input and 

output processes on a single 4D/310 and with 16 reconstruction processes, each assigned to a separate 4D/ 

35. The benchmark did not use tape drives. Input was generated by the input process and swallowed by 

the output process. The results are shown in Figure 14. 

Figure 14 CPS Sustainable Aggregate Throughput (KB/sec) 
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8. Conclusions and Future Work 

CPS has been in production-level use at Fermilab since late 1989. At the present, nine experiments at 

Fermilab use CPS and CPS Batch in a production environment. This means that each of these experiments 

are running CPS Batch fibs twenty-four hours a day, seven days a week. Cl’s is also used by the 

Superconducting Super Collider Laboratory as an integral part of the Physics Detector Simulation Facility 

It is also used by an experiment at the National Institute of Nuclear Physics in Bologna, Italy, and by a 

group at the University of Michigan. Because of the large amount of use, CPS has become very robust. 

Work is underway to formalize the distribution mechanisms, software releases, and user support channels 

for CI’S, assuming funding for this can be obtained. 
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The farm solution has caught the attention of other fields with computing requirements similar to 

HEP’s event reconstruction. A collaboration between Fermilab, IBM, and Merck is under way to apply 

CPS and farms to the problem of rational drug design. This will be a first test of usage in an industrial 

research environment. The farm solution is not a replacement for a supercomputer. It is an architecture 

originally designed to solve a specific problem. The main characteristic of this problem is that it is very 

compute intensive, with each byte of I/O requiring 500-2003 machine instructions. A farm is a very cost 

effective solution for this problem, and as it is torning out, many other problems with similar 

characteristics. 

It should also be pointed out that a farm is not merely a collection of networked computers. The way 

they are used and managed sets them apart. All the processors in a given farm work collectivelyon a 

single job. Also, processors in a farm are managed ‘in parallel’. This means that a modification made to one 

system is broadcast to all others 

Work on CPS and CI’S Batch is by no means finished. Tools to make application debugging easier are 

being considered. Tools for monitoring CPS Batch operations as well as interactive CPS pbs are currently 

under development. Both ASCII and X-windows interfaces will be included. Work is also in progress to 

add dynamic load balancing and load sharing to CPS Batch. If a farm is idle and a job is submitted, the jab 

should be able to use all the CPUs. As jobs are submitted to other batch queues which use the same farm, 

processes in running jobs can be shutdown to make room for processes in the new job. Also, if a job 

finishes, other jobs can expand to fill the vacant CPUs. In the current batch system, the farms anz divided 

into static production systems. A system with dynamic load balancing can better utilize the available 

computing cycles of a farm. 
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